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The nature of the boundary layer induced by the motion of a three-dimensional 
vortex loop towards a plane wall is considered. Initially the vortex is taken to be a 
ring approaching a plane wall at an angle of attack in an otherwise stagnant fluid; 
the ring rapidly distorts into a loop shape due to the influence of the wall and the 
trajectory is computed from a numerical solution of the Biot-Savart integral. As the 
vortex loop moves, an unsteady boundary-layer flow develops on the wall. A method 
is described which allows the computation of the flow velocities on and near the 
symmetry plane of the vortex loop within the boundary layer. The computed results 
show the development of a variety of complex three-dimensional separation 
phenomena. Some of the solutions ultimately show strong localized boundary- 
layer growth and are suggestive that a boundary-layer eruption and a strong 
viscous-inviscid interaction will be induced by the moving vortex. 

1. Introduction 
Physical situations involving the motion of vortices near solid walls occur in a 

variety of diverse circumstances in fluid mechanics. As a vortex moves above a wall, 
it induces an unsteady flow in the viscous boundary layer near the wall and it is of 
interest to understand the nature of this viscous response to the vortex motion. In 
many situations, the induced boundary-layer effects have a profound influence on 
the vortex motion. In  the cme of aircraft trailing vortices, it is known (Harvey & 
Perry 1971 ; Walker 1978) that each trailing vortex actuates a strong boundary-layer 
eruption as the vortex approaches the ground plane. The phenomenon initiates 
because the vortex induces an adverse pressure gradient on a portion of the unsteady 
boundary-layer flow near the ground; an unsteady separation, in the form of a 
detached secondary eddy, develops within the boundary layer and this is soon 
accompanied by explosive boundary-layer growth near the separation (Walker 
1978). The process culminates in a strong viscous-inviscid interaction consisting of 
an abrupt ejection of a secondary vortex from the boundary layer. The secondary 
vortex is of opposite rotation to the original trailing vortex and is strong enough that 
the trajectory of the trailing vortex is substantially changed from that predicted by 
inviscid theory (Harvey & Perry 1971). 

The boundary-layer effects induced by two-dimensional vortex have been 
considered by Doligalski & Walker (1984) for a vortex convected in a uniform flow 
above a wall and by Ersoy & Walker (1985a, b, 1986) for counter-rotating vortex 
pairs near a wall. Numerical calculations for the development of such flows reveal 
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that a variety of complex and unusual separation phenomena occur in the boundary 
layer as a consequence of the adverse pressure gradient imposed by the vortex 
motion above. However one common conclusion is that once two-dimensional 
vortices are close enough to a wall for a sufficient period of time, a boundary-layer 
eruption and a strong interaction with the outer inviscid flow is apparently 
inevitable. 

The results for two-dimensional flows are suggestive of the basic physical 
mechanisms in more complex three-dimensional flows. For example, the solutions for 
vortex pairs (Ersoy & Walker 1985a) suggest a reasonable explanation of why 
a Gortler-vortex flow develops secondary instabilities (Bippes 1972). The basic 
phenomenon also offers a potential explanation for the observed regeneration of 
vorticity in turbulent boundary layers (Walker, Scharnhorst & Weigand 1986). 
However, an additional feature of three-dimensional motion which may have an 
important effect is the phenomenon of vortex stretching. Perhaps the simplest 
illustration of vortex stretching corresponds to a circular vortex ring approaching a 
wall on a trajectory normal to the wall; as the ring moves towards the wall, the 
diameter expands and at the same time, the dimensions of the vortex core decrease, 
giving rise to an intensification of the level of vorticity near the core (Lamb 1932, p. 
242). It emerges that in this case, vortex stretching appears to enhance the eruptive 
response from the boundary-layer flow near the wall ; a series of detailed experimental 
and numerical studies carried out by Walker et al. (1987) show that a moving vortex 
ring induces the formation of a secondary vortex ring within the boundary layer and 
that the secondary ring is subsequently ejected from the boundary layer. In many 
cases, the original ring was able to induce the formation of a third tertiary ring. 
Similar results have recently been reported by Didden & Ho (1985) who have 
investigated the flow near a wall due to a forced impinging air jet. The jet was 
oriented normal to the wall and contained ring vortices on the periphery of the jet. 
The vortices were observed to induce several unsteady separations in the boundary- 
layer flow near the wall and eruptions in the form of ejections of secondary 
vortices. 

Vortex motions are known to be an important feature of the time-dependent flow 
in a turbulent boundary layer and a t  least two different types of relevant vortex 
models have been proposed. The first of these is the hairpin vortex (Head & 
Bandyophadyay 1981 ; Smith 1984; Acalar & Smith 1984, 1987a, b; Hon & Walker 
1987). Another type of vortex motion has also been proposed as a potential basic 
element of wall-layer turbulence; this is the discrete loop vortex (Doligalski & 
Walker 1978; Falco 1977, 1982, 1983) which is the subject of this study. In theory, 
all vortex filaments form a closed loop in three-dimensional flows since the no-slip 
condition prohibits the termination of a vortex filament on a solid wall in a real fluid. 
The observation of what appear to be small compact ring-like vortices in wall-layer 
turbulence (Falco 1977, 1982) has led R. E. Falco (1979, private communication), 
Falco & Wiggert (1980) and Cerra & Smith (1983) to investigate the nature of the 
viscous flow created by a ring vortex which was set in motion towards a plane wall 
at an angle of attack ; these flow visualization experiments showed that a complex 
interaction occurred as the vortex approached the wall which resulted in the creation 
and subsequent ejection of a secondary vortex from the boundary layer on the wall. 
An objective of the present study is to compute the type of boundary-layer 
development that has been observed in these studies. 

In  the configuration considered here, the vortex is taken to be a circular vortex 
ring which is introduced into an otherwise stagnant fluid above an infinite plane wall; 
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as time increases, the ring distorts into a three-dimensional loop due to the influence 
of the plane wall. The vortex is assumed to be a filament of small cross-sectional area. 
To calculate the subsequent motion it is necessary to track the evolution of a three- 
dimensional space curve and this was carried out through a numerical time- 
dependent integration of the Biot-Savart law using an approach developed by Moore 
(1972). As the vortex loop moves, it induces an unsteady three-dimensional 
boundary-layer flow near the wall. For vortex-driven boundary-layer flows in two- 
dimensions (see for example Doligalski & Walker 1984), on the order of 2 x lo4 mesh 
points were required to provide an accurate description of the complex flows that 
develop in the boundary layer; it is certain that this figure would have to be 
increased by a t  least two orders of magnitude to compute the full three-dimensional 
flows of interest in the present study. Such a computation would require larger 
computer resources than were available and consequently a simplification of the 
boundary-layer problem W&E( considered. 

In the present configuration, the vortex loop always has a plane of symmetry as 
it moves either towards or away from the wall. It emerges that the boundary-layer 
flow on the plane of symmetry develops independently of the rest of the boundary- 
layer flow. Here an approach is developed that allows for the computation of the 
leading terms for all three velocity components in the boundary layer on and near the 
symmetry plane. Calculations are carried out for three cases; of these, two are 
situations where the vortex moves towards the wall whereas in the third case the 
vortex recedes from the wall. As the vortex loop moves, the unsteady boundary-layer 
development near the symmetry plane is computed numerically. In  all cases, 
boundary-layer separation and a complex flow evolution occur on the symmetry 
plane. In the two cases where the vortex moves towards the wall, separation is soon 
followed by an explosive local boundary-layer growth. The results suggest that a 
strong interaction will occur in the form of the ejection of a secondary vortex from 
the boundary layer and here the correspondence with experimental observation is 
encouraging. 

In  $2 the numerical approach and theory needed to compute the trajectory of the 
vortex loop are described. The boundary-layer problem for the flow in and near the 
symmetry plane is formulated in $3; the asymptotic form of the boundary-layer 
problem on the symmetry plane but at large distances from the vortex loop is derived 
in $4. The numerical solution method for the boundary-layer problem is discussed in 
$5 and calculated results are described in $6. A summary of results is given in $7. 

2. The inviscid flow 
Consider the initial configuration depicted in figure 1 where a vortex ring of radius 

R is located above a plane wall ; (x, y, x) are dimensionless Cartesian coordinates (with 
respect to R) having origin in the plane and with y measuring distance normal to the 
plane. Initially the normal to the plane of the vortex ring intersects the (x, 2)-plane 
at an angle of attack a; the projection of this normal defines the streamwise 
2-direction. A sketch of the initial vortex configuration as projected into the (2, 2)- 

plane is given in figure 2 and it may be inferred that the inviscid flow induced by the 
ring and its image below the wall is symmetric about the (2, y)-plane. The coordinate 
z measures spanwise distance from the symmetry plane x = 0. The vortex ring cuts 
the symmetry plane in two locations which have coordinates that will be denoted by 
(xl, yl, 0) and (x2, y2, 0) ; the slice of the vortex closest to the wall is always designated 
as (x2, y2, 0). The schematic diagrams in figures 1 and 2 apply only at the initial 
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FIGURE 1. The geometry and initial configuration of the vortex ring. 

FIGURE 2. Top view of the initial vortex configuration. 

instant. The ring will start to deform immediately under the influence of the velocity 
field due to the image vortex below the plane, into a shape that will be referred to 
as a loop. Depending on the assumed sense of circulation the loop vortex will either 
advance towards the wall or recede from it. However it is evident that, even as the 
vortex deforms and (x,,y,) and (x2,yz) change with time, the inviscid flow remains 
symmetric about the plane z = 0. 

The evolution of the vortex was computed using the Biot-Savart law for which a 
variety of approaches are possible (Leonard 1980, 1985). The method described by 
Moore (1972) is particularly convenient for numerical calculations (see also Dhanak 
& De Bernardinis 1981 ; Dhanak 1981) and the specific form is 

where s is a Lagrangian coordinate along the space curve C defining the instantaneous 
location of the vortex and so denotes a specific location on the vortex; u* is the 
velocity vector at so, uzxt is an external irrotational flow field due to the image vortex 
and t* is dimensional time. Here r is the circulation about the vortex in a plane 
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normal to the filament and, by Kelvin’s theorem (Batchelor 1970), is constant both 
in time and along the vortex. The integrand in the Biot-Savart integral is generally 
singular at s = 8, and the consequent velocity field must be interpreted as an outer 
solution, which is singular near the vortex and which must be matched to an inner 
viscous solution in the vortex core (Callegari & Ting 1978). In Moore’s (1972) method, 
a small parameter ,u is inserted into the denominator of the integrand in (1) to 
artificially make the integrand finite at  s = so ; by evaluating (1) when C is a circular 
vortex ring (Moore 1972; Ersoy & Walker 19853) moving in an otherwise stagnant 
fluid and by insisting that the resulting expression agree with known exact results 
obtained from asymptotic matching, it can be shown that ,u is proportional to the 
vortex-core radius a. For a vortex core in solid-body rotation and having no axial 
flow, it may be verified (Moore 1972) that this procedure leads to 

a 
,u = e-U. (2) 

At any stage in the motion, the vortex-core radius is sensibly uniform along the 
vortex (Moore & Saffman 1972 ; Callegari & Ting 1978) and 

L(t*) a2(t*) = 2xa;. (3) 

where a, is the initial core radius and L(t*) is total arc length of the vortex filament 
at time t*. From a physical standpoint, any local non-uniformities in the core radius 
are rapidly smoothed out by internal waves which travel along the vortex core in a 
timescale that is short with respect to the overall motion of the vortex (Moore & 
Saffman 1972). 

At t* = 0, the Lagrangian s-coordinate was chosen to have a range (- 1 , l )  on the 
initial ring vortex with s = 0 corresponding to the front portion of the vortex on the 
symmetry plane and s = & 1 defining the rear portion on z = 0. Calculations were 
carried out for s in the range (0,l) (by virtue of the symmetry about s = 0) using a 
number of mesh sizes as a check on the accuracy. A typical calculation involved 100 
equal intervals for s in the range [0,1]. Note that 8 = constant always refers to the 
same fluid particle whose position is then tracked in space with the passage of 
time. 

The specific value of the circulation r may be scaled out of the equations by 
defining a dimensionless time and velocities according to 

The circulation r is positive in the configuration depicted in figure 1, for which 
the vortex will move towards the wall ; for r negative, the vortex recedes from the 
wall. Each node of the vortex is convected in the induced velocity field and with 
u = aX/at, (1) governing the vortex trajectory may be written 

Here the notation ‘image’ in the last integral indicates that the integration is 
performed on the image vortex loop (figure 1). A vector Ximsge(s, t )  to a point on the 

19-2 
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Case 1 2 3 

Direction of motion Down Down Up 
Angle of attack, a 60 80 70 

Initial core radius, a, 0.05 0.05 0.05 
Initial distance from the wall, 1 1.25 0.75 1.44 

TABLE 1. Parameters associated with the vortex trajectories 

- sgn (0 + + 

Initial ring radius, R 1 1 1 

image is obtained by changing the sign of the y-component of the vector X(s,  t )  to a 
point on the vortex. The function P in (5 )  is defined by 

and is introduced in (5 )  following a procedure due to Moore (1972). The integrand in 
(1) is rapidly varying near s = so for small a (and hence p)  ; adding and subtracting 
the leading-order term of the integrand yields the first integral in (5) of a function 
which is O( 1) everywhere. The second integral in ( 5 )  may be evaluated analytically. 

Calculations were carried out for the three cases listed in table 1, where the 
parameters associated with the initial vortex configurations are given. The solution 
of (5 )  was advanced for each node using a fourth-order Runge-Kutta method; the 
derivatives in the integrands were evaluated using central-difference formulae and 
the integrations along the vortex were carried out using Simpson's rule. At any stage 
in the integrations, the current value of the core radius was evaluated using (3). 

It was observed in the numerical work that the integrations tended to become 
unstable unless very small time steps were used; in addition, the stability problem 
was exacerbated as the number of nodal points on the vortex was increased to ensure 
a better spatial resolution. The reason is associated with the relatively small initial 
values of a, that were used here as opposed to previous studies (Dhanak & De 
Bernardinis 1981 ; Dhanak 1981) where the values of a were typically almost an order 
of magnitude larger. The use of thick vortex cores brings into question the validity 
of using the thin-filament approximation on which ( 5 )  is based; in the present study, 
thick cores were considered undesirable since situations where the vortex makes a 
close approach to the wall are of interest. It may be inferred from (5 )  that near the 
point so the denominator in the first integral is O(a3) which tends to emphasize 
numerical errors in the approximation to aX/as. The variation near s = so becomes 
more severe as a is decreased and using relatively large time steps results in strong 
instability of the numerical scheme. In the present study, a small time step of 
At = 0.001 was used throughout the calculations. 

The trajectory for case 1 is depicted in figure 3 where the dimensionless time 
interval between vortex locations is 0.1. In this case the circulation r is positive and 
the initial angle of attack is a = .INo. As the ring moves towards the wall it distorts 
into a loop. Vortex stretching plays an increasingly important role as the vortex 
approaches the wall ; as the loop stretches, the core radius decreases and during the 
sequence in figure 3, the core radius decreased from 0.05 to 0.0462. 

Once a vortex trajectory has been computed, the position of the vortex loop is 
known as a function of time and, at any instant, the inviscid velocity distribution 



Boundary layer due to a three-dimensional vortex loop 575 

-3 -2 - 1  0 1 2 
X 

(u) Side view 

2 

(b) Top view 

FIGURE 3. Temporal development of a vortex loop moving towards the wall for case 1 ; the 
initial angle of attack a = 60". 

near the wall induced by the moving vortex may be computed from the Biot-Savart 
law. In particular, the dimensionless velocity field at  any point in the half-space 
y > 0 and not on the vortex is given by 

Here the vectors 

X L  = X L  i+ yLj+ Z L  A, XI = X L  t - yL j+  Z L  A, (8) 

are used to denote the position of an prbitrary point on the vortex loop and its image 
respectively. The vectors f ,  j and k are unit vectors in the x ,  y and z directions 
respectively. Now consider the form of (7) as y + 0 for which the inviscid velocity a t  
the wall becomes 

U(XW) = UW(Z, z, t) i+ WW(2, z, t) L, (9) 
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where 

Y L - +  (x-xd- 
(11) 

as 
W,(z, z,  t)  = -sgn (f) s' [ ,ds. 

-1 {(x-ZJ+y;+ (z-zL)2p 

In this study, the boundary-layer development on the symmetry plane z = O  is 
of interest and thus it is necessary to evaluate the special forms of (10) and (11) as 
z+O.  It is evident that xL, yL and azL/as are symmetric about z = 0 while axL/as, 
ayL/as and zL are antisymmetric. On the symmetry plane, a dimensionless stream- 
wise velocity is defined according to 

U ,  = lim Uw(x, z, t ) ,  
z*o 

and it may readily be shown that 

The spanwise velocity W, vanishes as z +- 0 but the gradient a W,pz is non-zero and 
near z = 0, W, may be written 

It is then easily shown that 

At any stage in the vortex motion, values of xL(s, t ) ,  yL(s ,  t)  and zL(s, t )  define the 
current location of the vortex and are known from the numerical solution of (5) .  A 
numerical integration of (14) and (15) is then readily carried out to evaluate U, and 
8,; this is the information required to solve the boundary-layer problem on the 
symmetry plane. 

3. Boundary-layer formulation 
Dimensionless variables for the boundary -layer flow induced by the moving vortex 

may be defined in terms of the initial ring radius R and a speed l ~ l / R ,  where 
K = r /2x  is the constant strength of the vortex. Let 

be the scaled normal coordinate and velocity respectively, where Re = I K i / v  is the 
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Reynolds number and v is the kinematic viscosity. The three-dimensional boundary- 
layer equations in these variables are 

Here p,(x, z, t) is the pressure distribution due to the moving vortex evaluated at the 
edge of the boundary layer. The calculation of the entire boundary-layer flow field 
is a difficult numerical task because a very large number of mesh points would be 
required to yield an accurate description of the unsteady three-dimensional flow. In 
the present situation however, it is possible to calculate the boundary-layer 
development on the symmetry plane z = 0 and to obtain a limited amount of three- 
dimensional information there. Near the symmetry plane, the u- and w-velocity 
components and pressure may be written 

= u(x, g, t )  + o(z*), = ze(x, g, t )  +o(za), b)  

e(x,g,t) = & 9 (21) 
aw Lo where 

the form of which is compatible with the inviscid velocity distributions at the 
boundary-layer edge ; the first terms represent the leading-order representation of 
the solution for small z and the order of the first terms neglected is indicated in 
(20). 

Substituting (20) into (17)-(19) and taking the limit z+O leads to 

au au au au, au azu 
-+u-+v- = -+Urn’+-, 
at ax ag at ax ap 

ae ae ae ae, ae, a20 
-+u-+v7+e2 = -+u,-+ee,+- ag2 
at ax ay at ax 

-+-+e = 0. ax qg 
a u a v  

(24) 

This set of equations defines the unsteady boundary-layer problem on the symmetry 
plane z = 0 with the boundary conditions, 

where U, and 8, are given by (13) and (15). 
In order to motivate the subsequent transformations, it  is worthwhile to consider 

the general nature of typical distributions of Ooo(x, t )  and U,(x, t )  which are plotted 
in figure 4 for case 2 at t = 0.15 as an example. It may be seen from figure 4 that 
U, changes sign, being predominantly negative to the left of the origin and positive 
to the right. In addition to the one zero of U,, which is evident in figure 4, there is 
another zero for large negative x. It can be inferred from (13) that the second zero 
will always occur; the denominator in the integrand of (13) is quadratic in x and 
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hence as x ++ co or x+- 00, U,(x, t) must be of the same sign. The fact that 
Um(x, t) has two zeros whose positions change with time precludes writing the 
boundary-layer solution in  the form u = Urn@, t )  F(x ,  y, t ) ,  which is normally a 
convenient form for computational purposes. Consequently, a decomposition of Urn 
was sought of the form 

where U ,  and U ,  are to be selected so that neither function has a zero for all t and 
in addition U ,  is of the opposite sign to U,.  This decomposition could be carried out 
in a variety of ways and one convenient choice is 

U&, t )  = U,@, t )  + U,(& t ) ,  (26) 

U,(X, t )  = - 2 

+ 2  

a Y L  ZLas 
{ (x- XL)2+ y; + Zi}' 

ds, 

ads I aZL 

yL as 
{(x- XL)2+ y; + z;p 

.5 

It may readily be verified that U ,  and U ,  have different signs for all x. 
It may be seen from figure 4 that for r positive, 8, is predominantly positive since 

the spanwise inviscid velocity is primarily directed away from the symmetry plane 
z = 0 as the vortex loop moves towards the wall. However i t  may be inferred from 
(15) that 8, has opposite signs as x +. & 00 and thus there must be a t  least one zero 
of 8, at some x-location; the zero in 8, occurs in figure 4 for x < 0. Thus for x 
sufficiently negative (for positive r) there is a region where the inviscid spanwise flow 
is towards the symmetry plane. For rnegative, the vortex recedes from the wall and 
the direction of the spanwise inviscid velocity is reversed. A decomposition of 8, was 
carried out according to 

where 8, and 8, were selected so that neither function has a zero and each is of 
opposite sign. Again there is a variety of ways in which this decomposition can be 
carried out; a convenient choice (Ersoy & Walker 1985b) is 

eco(x, t )  = t )  + 8 2 ( ~ ,  t ) ,  (28) 

I 1.' (~-2L-0.5)~ ayL 
as 

1 (x-zL+O.~)~ ayL 
zL - ds 

as 

8,(x, t )  = + 3 sgn (r) 6 ZL - ds, 
{ (x - XL)2 + y; + 2;)s 

{(x - 2 L ) 2  + y; + z;p 
8,(x, t) = - 3 sgn (r) 

The decompositions of U, and 8, are also plotted in figure 4. Note that the vortex 
is closest to the wall for x < 0 and here U, and 8, show a relatively large pulse. 
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- 4  -6  t 
F'IIXJRE 4. Typical distributions of U, and U,, the decomposition of U, and and 8,, the 

decomposition of 8, (case 2 at t = 0.16). 

Returning now to the boundary-layer equations on the symmetry plane, it is 
convenient to introduce a function $(x,  y ,  t )  defined by 

8 = -  $(x,  0, t )  = 0, ag' 
and another function +(x,  y ,  t )  which is defined in terms of the velocity components 
u and v by 

It may be verified that the continuity equation (24 )  on the symmetry plane z = 0 is 
identically satisfied. 

The doubly infinite range of the streamwise coordinate x may be transformed to 
a finite range by defining a new streamwise variable 6 according to 

6 = - A 2 arctan {2x;"x2} 
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Here x1 and x2 correspond to the streamwise locations where the vortex loop 
intersects the symmetry plane. The transformation is one-to-one and maps the range 
( - 00, co) of x to the finite range ( -  1 , l )  in 6. Note that at any stage in a numerical 
solution of the vortex loop trajectory, values of x1 and x2 are readily available 
corresponding to the x-components of the solution of ( 5 )  a t  s = 0 and s = 1 
respectively. An important advantage of the [-coordinate is that the leading and 
trailing slices of the vortex loop at x1 and x2 correspond to 6 = &i respectively for all 
t ;  thus although the leading and trailing portions of the vortex loop may exhibit 
substantial movement in the x-coordinate, they are frozen in the &coordinate. 

The motion is assumed to initiate when the vortex is first introduced in the flow ; 
this initial condition is a reasonable simulation of experimental studies where a 
vortex ring is created abruptly with a piston generator (Falco 1983; Walker et al. 
1987). Immediately a thin boundary layer of thickness O(ti) begins to develop on the 
wall and to take this behaviour into account, it is convenient to define a scaled 
normal coordinate according to n. 

q = Y  
2tt ' 

and to define the streamwise velocity and spanwise shear 8 by 

Here Y and @ are related to the original variables $ and + by 

@ = 2 t ~ { 2 u l ~ ( 7 ) + ( u 2 - u l )  y3, + = 2t48,1(7)+8~@), 

where 

(33) 

(35) 

(36) 

The v-component may be obtained from the second of (31) and 

The boundary conditions associated with Y and @ are 

for all f and t .  
The principal motivation for writing the velocity components in form of (34) is 

associated with the numerical solution procedure. It is convenient (for a variety of 
reasons) to deal with a dependent variable which varies from 0 to 1 across the 
boundary layer; (34) defines such dependent variables aY/aq and a@/Q but the 
transformations are by no means unique. The main factors which motivate the 
selected form of (34) are : (i) the coefficients of a!P& and a@/aq in (34) cannot vanish 
at any x in the range - 00 < x < 00 for all t and (ii) the coefficients of aY/a7 
and a@/aq should contain a dominant portion of the inviscid velocity distribution 
(otherwise it emerges that the convergence rate of the numerical scheme is adversely 
impacted). Portions of the inviscid velocity distributions in (34) are associated with 
the error function. Note that the error function will emerge to be a solution of 
boundary-layer equations at t = 0 but in the context of (34) should be viewed simply 
as a convenient function which varies from 0 to 1 across the boundary layer. In view 
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of the distributions of 8, and 8, depicted in figure 4 ,  the choice of the decomposition 
for 8 in (34)  was relatively straightforward. Different forms for the decomposition of 
u were considered (see Ersoy & Walker 19853) and it was determined that the form 
given by (34)  was satisfactory in all cases. 

Both momentum equations (22)  and (23) assume a similar form; the x-momentum 
equation (22) becomes 

P = 2q+4tV, \ 

ag au 
ax ag +2(U,-  U , )  - 2 erfq 

G =-- 

where the x subscript denotes functions associated only with the x-momentum 

I 

where the subscript z denotes functions associated only with the z-momentum 
equation and 

1 ae, agae 

e, ax ag 

2 u  agae, rf R =- 4t- -+-A +>--e q [ o,( at at as) e, ax ag 

1 (us- '1) -- '6 ae2 u + 20, erfq + e2 Y , + 
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In both sets of equations (39) and (42), 8,, 8,, U, and U ,  appear, aa well as 
derivatives of these quantities with respect to f and t ;  these quantities are known 
functions of f and t which are evaluated from the computed vortex trajectory 
through (27) and (29). In addition, the gradients a[/az and af/at may be evaluated 
by differentiating the transformation (32) ; at any stage, values of zl(t) and xe( t )  are 
known from the trajectory information and dz,/dt and dz,/dt may be computed 
from (5) by taking s = 0 and s = 1 respectively. Note that both (39) and (42) are 
nonlinear since the functional coefficients contain the dependent variables U ,  Y, Y 
and a. Finally the associated boundary conditions are 

u = Y =  Y = @ = O  a t q = 0 ,  U,Y-+1 asq-+co. (44) 

4. The boundary-layer equations at inSnity 
The solution of the boundary-layer equations (39) and (42) as 1x1 -+a (f-+ f I )  

develops independently of the solution in the interior ( - 1 < f < 1). It may be seen 
from (27) and (29) that U,, U,, 8, and 8, are all O ( X - ~ )  as 1x1 + co ; in addition it is 
easily verified that a[/az = O(x-,)  and aC/at = O(z-') as 1x1 -+ co. Consequently it is 
easily shown that the limiting forms of (39) and (42) are 

a0 a 2 0  a 0  
at a7 371- 

4t - = + 271 - - 4tA,(t) u - 4t{A,(t) (erf r] - 1) - A,(t)}, 

aY a2Y aF 
at a7 a71 

4t- = ,+2q--4tB1(t) f+4tBl(t) erfq, 

(45) 

as 161 -+ 1. Here U(q ,  t ) ,  F(h, t) denote the limiting values of U ( [ ,  7, t )  and Y(f, 7, t )  as 
I f 1  -+ co and the coefficients in (45) and (46) are given by 

where 

2 da, - 1 d  
(ae-a, dt (a2-a1) dt ' A,(t)  = ~ 1 -(a,--a,), A&) = (47) 

(49) 

At any stage in the integrations, the time-dependent coefficients in (45) and (46) may 
be evaluated from the trajectory information. The boundary conditions for 0 and 
are also given by 44). 

5. The numerical solution 
In order to initiate a boundary-layer integration, it is necessary to specify an 

initial boundary-layer state, and in the present study the boundary-layer flow was 
assumed to develop abruptly from rest upon insertion of the vortex ring into the 
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stagnant flow above the wall. The solution for U ,  Y and 8, Y which satisfies the 
limiting forms of (39), (42), (45) and (46) respectively as t + O +  is given by 

The boundary-layer solutions evolve forward in time from this initial state. 
The numerical method used is similar to that described by Walker (1978) and 

Doligalski & Walker (1984) and will not be discussed in detail here ; the scheme is an 
implicit method which is second-order accurate in both space directions and in time. 
A rectangular mesh in the (E,.r))-plane was defined with uniform mesh spacings of 
h, in the &direction and h, in the 7-direction ; a number of mesh sizes were considered 
as a check on the accuracy and values of h, = 0.01 and h, = 0.05 were determined to 
be sufficiently small to obtain reliable results. The last of conditions (44) were 
enforced at an outer boundary of ym = 6 as an approximation ; this value of qm was 
determined to be sufficiently large to ensure that no significant changes in the 
solution would occur for larger qm. A constant time step of At = 0.001 was used to 
advance the boundary-layer solution forward in time corresponding to the time step 
used to compute the trajectory of the vortex loop as described in $2. 

The solution for U and Y was advanced from time step to time step using the 
following general procedure. First the solutions of (45) and (46) were advanced one 
time step using a conventional Crank-Nicholson procedure (see for example Ersoy & 
Walker 19853); once the solutions for 8 and P a r e  determined in the current time 
plane, the solution at 6 = If: 1 is known and the solution for the interior problem 
- 1 < 5 < 1 and 0 < 7 < qm can be advanced into the current time plane. This was 
carried out using a method based on the Crank-Nicholson approach (Ersoy & Walker 
19853) with centred differences for the spatial derivatives ; the difference equations 
associated with the approximations to (39) and (42) are nonlinear and at each time 
step, iteration is required. A Gausdeidel relaxation method was used to solve the 
difference equations and after each complete sweep of the mesh in the interior, the 
functional coefficients in (40) and (43) were updated using the current estimates of 
U and Y; at any stage, estimates of !I' and Q, were obtained from the current values 
of U and Y using a numerical integration of the last of (39) and (42) based on 
Simpson's rule. The overall iteration was allowed to continue until convergence was 
obtained at a given time step ; this was considered to have occurred when successive 
iterates for U and Y differed by less than four significant figures at all internal mesh 
points. Typically 10-15 global iterations were required at each time step to achieve 
convergence ; in the initial stages of the integrations, when rapid changes in the flow 
field take place, the scheme typically required on the order of 35-40 iterations. For 
the three cases which will be discussed here, calculations were carried out for on the 
order of 200-400 time steps. 

6. Calculated results 
In  this section, calculated results for the three caaes listed in table 1 will be 

described. The three-dimensional motion in the boundary layer is complex and in 
order to obtain a clear physical picture of the flow field, three types of streamline 
plots will be presented ; these are : (a) instantaneous streamline plots in the symmetry 
plane (the (2, q)-plane) ; (3) instantaneous contours of constant 8 in the (2, q)-plane ; 
and (c )  the instantaneous limiting streamlines on the wall (the (x,z)-plane) close to 
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the symmetry plane. l n  general, the equations of the streamlines in a three- 
dimensional flow are given by 

dx dg dz 
d7, _-  _- -  - -= 

u v w  (53) 

where T is a variable measuring distance along a streamline. Since w = 0 on the 
symmetry plane, it  may be inferred that once a fluid particle is located on the 
symmetry plane, it  can only leave the plane at a stagnation point u = v = 0. Thus 
stagnation points in the symmetry plane are rather important features of the flow 
field. The streamlines were traced by numerical integration of (53) (Ersoy & Walker 
1985b) using very small increments in 7. 

The contours of constant 0 show both the magnitude and direction of the spanwise 
flow near the symmetry plane; it follows from ( 2 0 b )  that constant4 curves are lines 
of constant spanwise inflow or outflow at a fixed but small value of z. A third type 
of plot consisting of the instantaneous surface streamlines in the (x,z)-plane was 
found to be very useful in the interpretation of the motion. A limited amount of 
three-dimensional information is available from the present calculations ; near the 
symmetry plane, u and w are given by (20). Near the wall, v is O(y2) while u and w 
are O(y) ; thus for small y, the surface streamlines are given approximately by 

for g 4 1, 
dz dx -=- 
ze u (54) 

near the symmetry plane (z 4 1). In the limit as y+O, the equations of the surface 
streamlines become 

In the present study, the limiting streamlines were plotted using (54) with the values 
of u and 8 taken from the numerical solutions at the first mesh point from the wall 
(7 = h2). It is not possible to determine a specific maximum value of z for which the 
leading terms in (20) give an adequate representation ; the maximum value of z used 
in the present plots was 0.1. 

In the streamline plots, the instantaneous direction of flow is indicated with 
arrows; for the constant4 curves, the magnitude and sign of each curve is shown to 
give an indication of the relative strength and magnitude of the spanwise flow near 
the symmetry plane. To give an indication of the current location of the vortex above 
the boundary layer as well as the timescale associated with the boundary-layer 
development, the initial streamwise location of the two points (xl and xt) where the 
vortex loop intersects the symmetry plane are indicated by an open triangle at  the 
top of each graph ; the current streamwise positions of the extremities of the vortex 
loop xl(t) and z2(t) are marked by vertical arrows. Finally in order to present an 
undistorted view of the flow patterns, the plots are presented in terms of the 
dimensionless physical variable x rather than the streamwise coordinate 6 used in the 
numerical integrations. The subsequent plots of the developing boundary-layer flow 
represent a limited selection from the detailed sequences given by Ersoy & Walker 
(1985 b). 

In the first case considered here, the angle of approach of the initial vortex ring is 
a = 60" and the vortex moves towards the wall. The portion of the vortex which is 
closest to the wall dominates the flow development in the boundary layer and for this 
reason the plot window in the subsequent graphs is centred in the region x < 0 near 
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the current z2. The streamlines in the symmetry plane at t = 0.125 are depicted in 
figure 5 (a) ; there are two limiting streamlines in this plot which terminate on the wall 
at stagnation points labelled S1 and 52. The stagnation point S2 is characterized by 
flow away from the wall; in the interim between t = 0 and t = 0.125, as the vortex 
has moved closer to the wall, S2 has moved progressively to the right from x = -2.8 
to about x = -2.0. On the other hand, S1 is characterized by flow towards the wall 
and has not moved significantly. A slight lifting of the streamlines near x = - 1.75 
may be observed in figure 5(a) .  

The constant-8 contours at t = 0.125 are shown in figure 5 (b) ; the field is divided 
into two portions by the 8 = 0 line. To the right of this line, 8 is positive and the 
spanwise flow is away from the symmetry plane; a maximum positive value of 8 is 
achieved at about x = - 1.25 starting on a line near 7 = 2.0 and extending outward 
through the boundary layer. To the left of the 8 = 0 line, all values of 8 are negative 
but are smaller in absolute value than the positive values to the right of the 8 = 0 
line ; the region to the left of the 8 = 0 line is thus a region of relatively weak inflow 
towards the symmetry plane. In the early stages of the motion the contours of 
negative 8 show a similar pattern to the contours of positive 8 in figure 5 (b). However 
as time increases a cusp forms in one of the negative4 contours (Ersoy & Walker 
1985b) and by t = 0.125 a new feature has developed in the form of an eye-shaped 
structure in the region of negative spanwise flow near the wall. At the centre of the 
eye, 8 reaches an absolute minimum and thus the spanwise inflow achieves a 
maximum at the centre of the eye. The critical value of 8 which encloses the eye is 
8 = -0.0557 and it may be seen that the two tails of this curve ultimately rise 
vertically towards the inviscid-flow region. 

The limiting surface streamlines at t = 0.125 are depicted in figure 5(c). These 
streamlines converge towards the stagnation point 52 ; 8 is negative near 52 and, 
with reference to figure 5(a) ,  it  may be seen that near 52 the flow is towards the 
symmetry plane and away from the wall. Consequently 52 is a nodal point of 
separation (Lighthill 1963). Note that the surface streamlines to the right of 52 are 
evolving in a manner tending to approach the symmetry plane tangentially near 
z = 0 and almost perpendicular to the plane for larger values of z. The point S1 is a 
nodal point of attachment and here the flow is towards the wall and away from the 
symmetry plane. One feature of figure 5(c) and subsequent plots of the limiting 
streamline beheviour is worthy of note. The locus of points where w = 0 in the 
surface streamlines occurs on the limiting streamlines joining S1 to S2 where 
az/ax = 0 ; there is one such locus of points in figure 5 (c) and the point where this 
locus intersects the symmetry plane generally corresponds to the location where the 
8 = 0 line intersects the wall. In  figure 5 (b, c) this occurs at about x = - 1.6. 

The next stage of development for case 1 is depicted in figure 6 at t = 0.175. It may 
be observed in figure 6 (a) that the stagnation point 52 has shifted to near x = - 1.5 ; 
furthermore a region of three-dimensional separation has developed to the left of S2 
between the wall and the lifting streamlines in the upper portion of the boundary 
layer. The two new critical features in the streamline patterns in the symmetry plane 
are a new saddle-point stagnation point 53 as well as a focus which has been labelled 
F1. Note that this type of separation is rather different from the two-dimensional 
separations induced by vortex flows (Walker 1978; Doligalski & Walker 1984) in that 
the instantaneous streamlines do not form closed loops. In  fact, the streamlines near 
the focus all spiral away from F1 which is in a region of negative 8 and hence inflow 
towards the symmetry plane. Thus F1 is a stagnation point at which fluid particles 
are instantaneously entering the symmetry plane. All streamlines which spiral away 
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FIGURE 5. Boundary-layer development at t = 0.125 for case 1.  (a) Streamlines in the symmetry 
plane ; ( b )  constant4 contours; (c) limiting surface streamlines in the (z, 2)-plane. 
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from F1 trace a path towards the outer regions of the boundary layer in a corridor 
between the limiting streamlines through S2 and 53. 

Lines of constant 8 at t = -0.175 are depicted in figure 6(3) and it may be observed 
that the eye-shaped region, where the inflow to the symmetry plane reaches its 
maximum values, has increased in size. The critical curve 8 = -0.0966 enclosing this 
region now extends into the upper portion of the boundary layer as a single line. Note 
that the levels of inflow in the eye are increasing and that the location of the focus 
F1 is close to the centre of the ‘eye’. In addition it may be observed that the 
variation on the right side of ‘eye’ is intensifying as evidenced by the relative 
closeness there of the constant-8 contours. The surface streamlines at t = 0.175 are 
plotted in figure 6(c) where it is evident that the streamlines from the stagnation 
point S1 now approach 52 in a rather striking way. Surface streamlines from either 
side of S2 now approach a limiting line which is perpendicular to the symmetry plane 
for small z. 

A subsequent stage of development of the streamline patterns in the symmetry 
plane is shown in figure 7 at t = 0.2. The separation has grown in a direction normal 
to the wall ; in addition, the streamline through 52 is approaching the vertical on the 
right side of the separation and the variation on the right side of the three- 
dimensional separation is becoming very intense. At this stage, the flow field near the 
right side of the separation is characterized by substantial boundary-layer growth ; 
as time increases, this growth accelerates and shortly after t=0.225 (after 
approximately 227 time steps) the numerical scheme failed to converge. Ultimately 
the flow on the right side of the separation region develops such a severe variation 
(Ersoy & Walker 19853) that the numerical mesh becomes inadequate. This 
behaviour is similar to that observed in two-dimensional vortex-driven flows 
(Walker 1978; Doligalski & Walker 1984) and is strongly suggestive that the 
boundary layer is evolving rapidly towards a state of interaction with the outer 
inviscid flow. The numerical results (Ersoy & Walker 19853) suggest the development 
of a singular behaviour in the boundary-layer solution at finite time ; a singularity is 
known to occur in certain two-dimensional flows (Van Dommelen 1981; Van 
Dommelen & Shen 1980; Elliot, Smith & Cowley 1983) as a boundary-layer flow 
evolves toward an interactive state. The failure of the numerical scheme is believed 
to occur as a consequence of the attempt to impose the tangential velocities induced 
by the moving vortex loop on the boundary-layer flow for an indefinite period of 
time. At present, numerical methods which would allow for the computation of the 
strong viscous-inviscid interaction that is expected to occur here are not available. 
However, based on the results of experimental observations (Harvey & Perry 1971 ; 
R. E. Falco 1979, private communication ; Falco 1982 ; Falco & Wiggert 1980 ; Mehta 
& Lim 1984), it is relatively safe to say that a strong interaction is expected in this 
flow in the form of a boundary-layer eruption ; furthermore this eruption is known 
to result in the ejection of a secondary three-dimensional vortex from the boundary 
layer. 

For the second case considered, the vortex ring is initially started at an angle of 
attack of a = 80’. However, until the vortex loop is relatively close to the wall, the 
boundary-layer development is gradual and to avoid a lengthy boundary-layer 
calculation, the vortex was started closer to the wall than in case 1 (see table 1). In  
figure 8 ( a )  the instantaneous streamlines in the symmetry plane at t = 0.1 are 
depicted. Note that there are two stagnation points on the wall and these are a node 
of attachment S1 and a node of separation 52, which at this stage is out of the plot 
window (cf. figure 8a)  to the left. The flow field at this stage is almost symmetric 
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FIGURE 6. Boundary-layer development at t = 0.175 for case 1. (a) Streamlines in the symmetry 
plane; (a) constant4 contours; (c) limiting surface streamlines in the (5, z)-plane. 
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about the limiting streamline through S1 although a slight lifting of the streamlines 
near x = - 1.5 may be observed. Contours of constant 8 at t = 0.1 are depicted in 
figure 8 ( b ) ;  here all values of 8 are positive, indicating that for x- and y-locations 
within the plot window, the spanwise flow is away from the symmetry plane. It 
should be noted however that for larger negative values of x to the left of the plot 
window, there are contours of negative (but small) values of 8; in this region, there 
is a weak spanwise inflow towards the symmetry plane. The constant curves in figure 
8 (b) are divided into three regions by the limiting contour 8 = 2.4964 ; to the left and 
right of x = 0 there are two pockets contained by the limiting contour within whioh 
the largest values of t9 are achieved. The left pocket contains the higher values of 0 
because the lower portion of the vortex loop is closer to the wall for x < 0. 

The next stage of development for case 2 is shown in figure 9 at t = 0.175. It may 
be observed in figure 9(a)  that a small region of three-dimensional separation has 
occurred near the wall for x < O ;  the streamwise extent of this separation is 
delineated by the two stagnation points 53 and S4 in figure Q(a) .  Note that this type 
of separation is somewhat different than observed in case 1. The stagnation point S4 
is a node of separation and the limiting streamline through 54 bends to the left and 
ultimately rises towards the inviscid-flow region. The stagnation point 53 is a saddle 
point of attachment and the limiting streamline through 53 originates at the focus 
F1 and spirals outward. All other streamlines near F1 spiral outward and ultimately 
pass between the wall and the limiting streamline through S4. The focus F1 is a point 
where the instantaneous flow enters the symmetry plane from outside and continuity 
requires that 8 be negative so that there is a spanwise inflow near Fl .  It may be 
observed from figure 9 ( b )  that the separation in the symmetry plane has been 
accompanied by the evolution of a pocket of negative &values near x = - 1.5; this 
region of negative 0 overlays and is somewhat larger than the separation region 
bounded by S3 and 54 in figure 9 (a). Note that the 8 = 0 contour has now penetrated 
the plot window from the left and intersects the wall near x = -2.1. 

The surface streamlines at t = 0.175 are plotted in figure 9(c)  and show a 
considerable change from figure 8 (c). The surface streamlines which emanate from 
the stagnation point S1 are ultimately deflected in the region to the left of Sl  into 
a streamline which is perpendicular to the symmetry plane for small z and which 
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RQURE 8. Boundary-layer development at t = 0.1 for cam 2. (a) Streamlines in the symmetry 
plane; (b)  constant4 contours; (c) limiting surface Streamlines in the (z,z)-plane. 
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FIQURE 9. Boundary-layer development at t = 0.175 for case 2. (a) Streamlines in the symmetry 
plane; (b )  constant-0 contours; (c) limiting surface streamlines in the (2,~)-plane. 
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FIQURE 10. Streamlines in the symmetry plane at t = 0.2 for case 2. 

terminates at 54 ; the stagnation point 54 is a node of separation and here the flow 
is away from the wall. Between 53 and 54, the surface streamlines move from the 
limiting streamline through 53 to the streamline terminating at 54. The stagnation 
point S3 is a saddlepoint of attachment. It may be seen that just to the left and right 
of 53 and 54 respectively there are small regions of inflow towards the symmetry 
plane; for this reason, the small zone of negative 0 in figure 9(c) is somewhat larger 
in streamwise extent than the region of separation between 53 and S4 in figure 9 (a). 
To the left of S3, the surface streamlines converge towards the node of separation S2 
a t  5 = -2.8. Note that the surface streamline patterns depicted in figure 9(c)  apply 
only near the plane of symmetry since this is the only information produced in the 
present approach. The patterns depicted in figure 9 (c) can only be continued to O( 1) 
distances from the symmetry plane by carrying out a full three-dimensional 
boundary-layer integration. 

As time increases an intense variation develops on the right side of the separation 
in figure 9(a)  and the 0 = 0 line in figure 9(b). By this stage, the boundary layer is 
in a state of rapid local growth at streamwise locations near 54 and shortly after 
t = 0.2 (after over 200 time steps) the integrations failed to converge. The streamlines 
in the symmetry plane a t  t = 0.2 (just before failure) are depicted in figure 10. Note 
that the stagnation point 52 has now moved into the plot window from the left. The 
kinking and severe distention of the streamlines as well as the severe boundary -layer 
growth near 54 are again suggestive of the early stages of the development of a 
singular behaviour in the boundary-layer solution. It is expected that this flow will 
also become interactive with the outer inviscid flow and further that the interaction 
will involve the ejection of some type of secondary vortex structure from the 
boundary-layer region. 

The final case considered here corresponds to a vortex which has the opposite 
rotation to the vortices considered in cases 1 and 2 and which therefore recedes from 
the wall. The vortex ring was initially situated at a distance of 1 = 1.444 from the 
wall and at  an angle of attack of a = 70'. The instantaneous streamlines in the 
symmetry plane are plotted in figure 11 (a )  at t = 0.2. The stagnation point Sl is now 
characterized by flow away from the wall and the limiting streamline through S1 is 
now inclined to the left. A second stagnation point S2 is located for x < 0 out of the 
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FIGURE 11. Boundary-layer development at t = 0.2 for case 3. (a) Streamlines in the symmetry 
plane; (b)  constant-6 contours; (c) limiting surface streamlines in the (5, %)-plane. 
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plot window to the left and is characterized by flow toward the wall. At  this stage, 
boundary-layer separation has not occurred even after 200 time steps ; this is because 
the vortex was initially started relatively far from the wall and as the vortex recedes 
from the wall, the influence of the vortex progressively diminishes. 

Contours of constant 8 at  t = 0.2 are plotted in figure 11 (b) where it may 
be observed that the values of 8 are predominantly negative, indicating that 
the spanwise flow induced by the vortex is towards the symmetry plane throughout 
the majority of the boundary layer. However near the wall, in the region 
- 1 < x < -0.3, a region of positive 8 has developed and here the direction of the 
spanwise flow is away from the plane of symmetry. The surface streamlines at 
t = 0.2 are shown in figure 11 (c) where it may be seen that the streamlines are 
converging towards the node of separation S1. Note the bending of the surface 
streamlines to the right of S1 indicating regions of spanwise outflow from the 
symmetry plane; this behaviour is consistent with the region of positive 8 depicted 
in figure 1 1 (c). 

The next stage of development for case 3 at  t = 0.3 is shown in figure 12. The 
instantaneous streamlines in the symmetry plane are shown in figure 12(a); the 
stagnation point S1 has shifted further to the left and in addition to S2 (which is out 
of the plot window to the left) there are now two more stagnation points on the wall. 
The first of these, 53, is a node of attachment; the limiting streamline through S3 
originates a t  upstream infinity. The second stagnation point, 54, is a saddlepoint of 
detachment and the limiting streamline through S4 originates at  the wall and spirals 
towards a focus Fl.  The focus F1 is in a region of positive 8 which may be verified 
with reference to figure 12(b). All streamlines between the wall and the limiting 
streamline through 53 ultimately spiral towards the focus at F1, where the 
instantaneous flow leaves the symmetry plane. This region may also be considered 
to be a region of three-dimensional separation. It may also be observed that the 
streamline above x = - 1 is deforming into a pocket and this suggests that a new 
feature will ultimately appear in this region. Note also that the region of positive 0 
near the wall depicted in figure 12 (3) is expanding. The surface streamlines at t = 0.3 
are depicted in figure 12(c). For the node S1, the surface flow approaches the 
symmetry plane along a limiting streamline which is perpendicular to z = 0 for small 
z; for the saddle point S4 the surface flow moves away from z = 0 along a line which 
is perpendicular to z = 0. All surface streamlines from the node 53 diverge and move 
towards the limiting streamlines through S1 and 54. 

The next stage of development for case 3 is shown in figure 13 at t = 0.45. It may 
be observed in figure 13 that the stagnation point S3 has moved further to the left 
while 54 has moved to the right. The region of three-dimensional separation bounded 
by 53 and 54 has expanded in the streamwise direction and grown in a direction 
normal to  the wall. In  addition, a second region of ‘separation’ has developed above 
x = - 1 ; a new saddlepoint stagnation point 55 above the wall may be seen as well 
as new focus F2. It emerges (Ersoy & Walker 19853) that F2 is in a region of negative 
8; thus the spanwise flow is towards F2 in the symmetry plane and here fluid enters 
the plane instantaneously. All streamlines near F2 spiral outward and ultimately 
turn upward towards the inviscid flow region in a corridor bounded by the limiting 
streamlines through 55. 

In this case, the numerical integrations can apparently be carried on for some time 
without evidence of eruptive boundary-layer growth ; the present calculations were 
terminated after 450 time steps. 
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FIGURE 13. Streamlines in the symmetry plane at t = 0.45 for caae 3. 

7. Discussion 
In this paper, detailed results have been presented for the boundary-layer 

development induced by a moving three-dimensional vortex loop above a plane wall 
in an otherwise stagnant fluid. The procedure outlined here allows the computation 
of the velocity components on and near the plane of symmetry of the vortex loop; 
in principle, the procedure may be extended to other unsteady three-dimensional 
flow situations where a plane of symmetry exists. 

In the first two cases considered, the circulation of the vortex loop was selected so 
that the vortex moved towards the wall. The calculated results for the flow near the 
symmetry plane show that boundary-layer separation occurs rapidly in the region 
where the vortex loop is closest to the wall. This boundary-layer separation bears 
some similarity to the two-dimensional separations induced by a moving vortex pair 
(Ersoy & Walker 1986) but in general is much more complex. In particular the 
instantaneous streamlines in the symmetry plane do not generally form closed paths 
in the region of separation ; in the present study, the streamlines generally consisted 
of a spiral motion towards a focus at which fluid was either instantaneously entering 
or leaving the plane of symmetry. Note that since the u- and v-velocities computed 
in the present study describe the flow close to the symmetry plane to within an error 
O ( 2 )  and since w is known within an error O(z3) ,  it has been possible to obtain a clear 
picture of the three-dimensional flow characteristics near the symmetry plane. 

The numerical results for the first two cases show the development of separation 
phenomena in three dimensions which are rather different. However both cases 
ultimately show an explosive boundary -layer growth near the separation region and 
suggest that a boundary-layer eruption will occur for all such flows where a vortex 
loop with positive circulation r approaches a wall. It should be emphasized that the 
calculations reported here only describe the flow development near the symmetry 
plane. It is entirely possible that the onset of a boundary-layer eruption may first 
develop at spanwise locations away from the symmetry plane ; this point can only be 
resolved through a calculation of the entire three-dimensional boundary-layer flow. 
The precise nature of the expected eruption and the subsequent strong vis- 
cous-inviscid interaction that will ensue could not be computed in this study. 
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However, i t  is anticipated that the interaction will involve the ejection of some type 
of secondary vortex from the boundary layer and this expectation appears to be 
compatible with experimental observations (R. E. Falco 1979, private com- 
munication ; Falco 1982 ; Falco & Wiggert 1980). 

For case 3, where r < 0 and the vortex loop recedes from the wall, boundary-layer 
separation also occurs. This separation also bears a resemblance to that induced by 
a pair of rectilinear vortices which recede from a wall (Ersoy & Walker 1986) but 
again the three-dimensional separation is much more complex. For case 3, the 
boundary-layer integrations could be carried on for a relatively long period of time 
without any evidence of the onset of explosive boundary-layer growth. In this 
situation, the vortex is initially far enough away from the wall so that it is able to 
‘escape’ the wall region without inducing a boundary-layer eruption. There is a 
parallel to this behaviour in the two-dimensional flow induced by a rectilinear vortex 
pair which recedes from the wall (Ersoy & Walker 1985a). It is to be expected (on the 
basis of the two-dimensional results, Ersoy & Walker 1986) that if the vortex ring 
were started closer to the wall (with r < 0), explosive boundary-layer growth and a 
strong interaction would be induced before the vortex loop can escape the wall 
region. 

The authors wish to express their appreciation to the Air Force of Scientific 
Research for supporting this study under AFOSR contract number F49620-83-K- 
0033. 
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